

Boiboite Opener Framework’s documentation

User manual

	Introduction
	Overview

	Interface with Scapy

	TL;DR
	Several ways to discover devices on a network

	Send and receive packets

	Craft your own packets!

	Basic fuzzing

	Usage
	Getting started with BOF Packets

	View packets and fields

	Modify packets and fields

	Network connection

	Error handling and logging

Modules

	Discovery
	Overview

	Passive discovery

	Other discovery functions

Protocols

	KNX
	Device discovery

	Send commands

	Connect to a device

	Send and receive frames

	Understanding KNX frames

	Testing KNXnet/IP implementations with BOF

Developer manual

	Notice
	Code quality requirements

	Comments and documentation

	Git branching

	Report issues

	Architecture

	Extend BOF

Source code documentation

	Introduction

	Basic and global functions
	Global settings and error handling

	Basic network protocol implementation

	BOFPacket base class

	BOFDevice base class

	Modules
	Using modules

	Discovery

	Layers
	Using layers

	KNX

	LLDP

	Profinet DCP

Introduction

Overview

[image: ../_images/boiboite.png]

BOF (Boiboite Opener Framework) is a testing framework for industrial and field
protocols implementations and devices. It is a Python 3.6+ library that provides
means to send, receive, create, parse and manipulate frames from supported
protocols, for basic interaction as well as for offensive testing.

There are three ways to use BOF:

	Automated

	Use of higher-level interaction functions to discover devices and
start basic exchanges, without requiring to know anything about the
protocol. BOF also has Modules that gather these functions.

	Standard

	Perform more advanced (legitimate) operations. This requires the end
user to know how the protocol works (how to establish connections,
what kind of messages to send).

	Playful

	Modify every single part of exchanged frames and misuse the protocol
instead of using it (we fuzz devices with it). The end user should
have started digging into the protocol’s specifications.

[image: ../_images/bof_levels.png]

Warning

Please note that targeting industrial systems can have a severe
impact on people, industrial operations and buildings and that BOF must be
used carefully.

Interface with Scapy

BOF relies on Scapy for protocol implementations, with an additional layer that
translates BOF code to changes on Scapy packets and fields. Why? Because BOF may
slightly modify or override Scapy’s internal behavior.

You do not need to know how to use Scapy to use BOF, however if you do, you are
free to interact with the Scapy packet directly as well.

[image: ../_images/bof_scapy.png]

For instance, in the code sample below, lines 2 and 3 do the same thing and
modify the same packet object. However for line 2, you set a value to the
field1 from BOF’s packet, applying any change provided by BOF when
setting a value. In line 3, the field is modified directly in Scapy’s
packet, BOF does not interfer. In other words, a BOFPacket object (here
KNXPacket) acts as a wrapper around a Scapy object representing the actual
packet using the specified protocol.

	1
2
3

	packet = KNXPacket(type=connect_request)
packet.field1 = 1
packet.scapy_pkt.field1 = 1

The reason we did that is because there is nothing better than Scapy to handle
protocol implementations, and by using Scapy we can also use all the
implementations that were written for it. But BOF and Scapy do not have the same
usage and aim. Just to mention a few:

	
	Field-oriented usage: BOF’s preferred usage when altering packets is to

	change specific fields directly. Why? Because BOF has been written to write
attack scripts, including fuzzers. In these fuzzers, we want to stick to the
protocol’s specification because if we don’t, devices we target may just drop
our frames. But we also want to do whatever we want on packets, sticking to
the specification or not. So what we usually do is to modify isolated fields
in frames. Scapy does not work this way and, although we can modify fields
independently, it’s hard to get and set values in a script, mostly because we
can’t refer to a field without referring to its parent packet holding its
value. This also implies that Scapy builds packets as a whole, and performs a
final computation / cleaning when building the packet before sending it, and
sometimes we don’t want that in BOF.

	BOF does not care about types: But Scapy does. Field objects in Scapy have
a type and you can’t change it easily or just use a field object that doesn’t
have a type without losing some capabilities. For us, packets are just a bunch
of bytes so we might as well set values directly as bytes to fields, and Scapy
won’t allow that (unless using RawVal, which does not provide all of Scapy’s
Fields capabilities). It won’t allow setting a value with the wrong type
either, and we don’t want field types to be a thing in BOF: a user should not
need to know the type of a field, or she may be able to implicitly change
it. That’s what BOF’s wrapper around the Scapy object does.

Setting value to field from BOF, type is changed automatically
bofpacket.host_protocol = "test"

Setting value to field directly on Scapy packet, type is invalid
and will trigger an error when the packet is built.
bofpacket.scapy_pkt.control_endpoint.host_protocol = "test"

TL;DR

Clone repository:

git clone https://github.com/Orange-Cyberdefense/bof.git

BOF is a Python 3.6+ library that should be imported in scripts.

import bof

Global module content can be imported directly from bof. Protocol-specific
content is in submodule layers (ex: bof.layers.knx).

from bof import BOFProgrammingError
from bof.layers import knx
from bof.layers.knx import *
from bof.modules import discovery

Now you can start using BOF!

Note

Examples in this section rely on the protocol KNX, but also apply to
the others. Please refer to the Protocols section of this
documentation for protocol-specific stuff.

Several ways to discover devices on a network

Passive discovery from the discovery module

from bof.modules.discovery import *

devices = passive_discovery(iface="eth0", verbose=True)

Device discovery using a layer’s high-level function

from bof.layers.knx import search

devices = search()
for device in devices:
 print(device)

Should output something like:

[KNX] Device name: boiboite
 Description: None
 MAC address: 00:00:ff:ff:ff:ff
 IP address: 192.168.1.242
 Port: 3671
 Multicast address: 224.0.23.12
 KNX address: 1.1.1
 Serial number: 0123456789

Create and send your own discovery packet

from bof.layers.knx import *

pkt = KNXPacket(type="search request")
responses = KNXnet.multicast(pkt, (KNX_MULTICAST_ADDR, KNX_PORT))
for response, _ in responses:
 print(KNXPacket(response))

Send and receive packets

from bof.layers.knx import KNXnet, KNXPacket, SID
from bof import BOFNetworkError

try:
 knxnet = KNXnet().connect("192.168.1.242", 3671)
 pkt = KNXPacket(type=SID.description_request,
 ip_address=knxnet.source_address,
 port=knxnet.source_port)
 pkt.show2()
 response, _ = knxnet.sr(pkt)
 response.show2()
except BOFNetworkError as bne:
 pass
finally:
 knxnet.disconnect()

Craft your own packets!

from bof.layers.knx import KNXPacket, SID
from bof.layers.raw_scapy.knx import LcEMI

pkt = KNXPacket(type=SID.description_request)
pkt.ip_address = b"\x01\x01"
pkt.port = 99999 # Yes it's too large
pkt.append(LcEMI())
pkt.show2() # This may output something strange

Note

A recipient device will probably not respond to that, but at least
now you know that BOF won’t stop you from messing with your packets.

Basic fuzzing

All BOFPacket inheriting packet objects in protocol (e.g. KNXPacket)
implement a fuzz() method.

for pkt in KNXPacket(type="configuration request").fuzz():
 knxnet.send(pkt)

The method generates packets mutated from the original frame. For each packet,
one random field has a random value set. This may not work with all fields
depending on their type, and you may also want some fields to remain unchanged.
In this case, the include or exclude arguments can be used.

for pkt in base_pkt.fuzz(exclude=("service_identifier")):
 knxnet.send(pkt)

Usage

Getting started with BOF Packets

Important

This section introduces a few general concepts about packet
crafting in BOF but does not tell you how to create and
manipulate packets with specific protocols. As there may be
differences depending on the protocol, please refer to the
Protocols section for details. Please note that not all
layers existing in BOF implement a BOFPacket object.

Protocol-dependent packets you may manipulate in BOF all inherit from
BOFPacket. For instance, KNXPacket is the BOF packet from the protocol
KNX. BOFPacket is not supposed to be instantiated directly, however it can
be useful when you start interacting with unknown/unimplemented protocols.

You can instantiate a packet inheriting from BOFPacket as follows:

bof_pkt = KNXPacket() # Empty
bof_pkt = KNXPacket(b"\x06\x10"[...]) # From bytes
bof_pkt = KNXPacket(field1=val, field1=val2, etc...) # Set values to fields

For KNX, packets usually have a type, therefore you could do:

bof_pkt = KNXPacket(type=SID.description_request)

Before going further, you should know that a BOFPacket relies on a protocol
implementation from Scapy or in Scapy format and will interact with a Scapy
Packet object relying on this implementation. This implies that:

	There are several features, mostly for printing the content of a frame,
inherited from Scapy.

	We have to make a clear distinction between BOF and Scapy content, especially
when setting values to fields, hence some usage choices detailed later.

	You can directly use Scapy features, if you interact with BOFPacket ‘s
scapy_pkt attribute.

View packets and fields

Here is how to read a complete packet:

>>> print(packet)
b'\x06\x10\x02\x03\x00\x0e\x08\x01\x00\x00\x00\x00\x00\x00'

>>> packet.show2()
###[KNXnet/IP]###
header_length= 6
protocol_version= 0x10
service_identifier= DESCRIPTION_REQUEST
total_length= 14
###[DESCRIPTION_REQUEST]###
 \control_endpoint\
 |###[HPAI]###
 | structure_length= 8
 | host_protocol= IPV4_UDP
 | ip_address= 0.0.0.0
 | port = 0

And to read the value of a field (for instance, host_protocol, which is
located in the control_endpoint PacketField):

Direct access from BOF packet
>>> packet.host_protocol
1

Reading bytes from BOF packet
>>> packet["host_protocol"]
b'\x01'

Using BOF packet method get() with no path
>>> packet.get("host_protocol")
1

Using get() method with absolute or partial path
>>> packet.get("control_endpoint", "host_protocol")
1

Browsing to Scapy field directly from scapy_pkt attribute
>>> packet.scapy_pkt.control_endpoint.host_protocol
1

There are a few things to consider when reaching fields for reading and writing
in BOF:

	packet.scapy_pkt.host_protocol won’t work, because scapy_pkt does not
have a host_protocol field. It has a control_endpoint field which has
a host_protocol. The complete (absolute) path is required when accessing
fields via scapy_pkt and not via BOF directly.

	packet.control_endpoint.host_protocol won’t work either. If you access
fields from BOF, only direct access is allowed (packet.host_protocol).
This is mainly to avoid confusions between BOF syntax and Scapy syntax (see
below). If there are two fields with the same name but different paths in the
packet, this syntax will refer to the first one. To refer to a specific one,
use packet.get()

Modify packets and fields

BOF does not only set values to packets and fields, it may change Scapy’s
default behavior when changing the Scapy Packet underneath. The main change is
that BOF will replace the field by a field with another type if the value we are
trying to set does not match the actual type.

>>> type(packet._get_field("host_protocol")[0])
<class 'scapy.fields.ByteEnumField'>
>>> packet.host_protocol = b"hey"
>>> type(packet._get_field("host_protocol")[0])
<class 'scapy.fields.Field'>

Therefore, there are two ways of setting a value in BOF.

	The BOF way:

>>> packet.host_protocol = b"cor"
>>> packet.host_protocol
b'cor'
>>> packet.update(b"ne", "host_protocol")
>>> packet.host_protocol
b'ne'
>>> packet.update(b"muse", "control_endpoint", "host_protocol")
>>> packet.host_protocol
b'muse'

	The Scapy way:

>>> packet2.scapy_pkt.control_endpoint.host_protocol = b"nope"

The BOF way will set the value while applying changes specific to BOF (ex:
replacing a field with a field with a different type). The Packet remains valid
(and readable by Scapy’s internal features) even if we set the wrong type to a
field.

The Scapy way will directly change the value of the Scapy field, BOF will
not interfer and will not apply BOF-specific changes. In this last example, we
set a value of the wrong type to the field, and an exception will be triggered
if you call a method that will try to reconstruct the packet (such as
show2() or raw()).

Network connection

BOF provides core class for TCP and UDP network connections, however they should
not be used directly, but inherited in protocol implementation network
connection classes (ex: KNXnet inherits UDP). A connection class carries
information about a network connection and methods to manage connection and
exchanges, that can vary depending on the protocol.

Here is an example on how to establish connection using the knx submodule
(3671 is the default port for KNXnet/IP).

from bof.layers.knx import KNXnet, KNXPacket, SID
from bof import BOFNetworkError

knxnet = KNXnet()
try:
 knxnet.connect("192.168.1.242", 3671)
 pkt = KNXPacket(type=SID.description_request,
 ip_address=knxnet.source_address,
 port=knxnet.source_port)
 pkt.show2()
 response, _ = knxnet.sr(pkt)
 response.show2()
except BOFNetworkError as bne:
 pass
finally:
 knxnet.disconnect()

There are also various ntework-related functions to use directly. For instance,
to send requests via multicast:

responses = KNXnet.multicast(pkt, (KNX_MULTICAST_ADDR, KNX_PORT))

Error handling and logging

BOF has custom exceptions inheriting from a global custom exception class
BOFError (code in bof/base.py):

	BOFLibraryError

	Library, files and import-related exceptions.

	BOFNetworkError

	Network-related exceptions (connection errors, etc.).

	BOFProgrammingError

	Misuse of the framework (most frequent one)

try:
 knx.connect("invalid", 3671)
except BOFNetworkError as bne:
 print("Connection failure: ".format(str(bne)))

try:
 pkt.KNXPacket(type=SID.configuration_request)
 pkt.update("unknown", 4)
except BOFProgrammingError:
 print("Field does not exist.")

Logging features can be enabled for the entire framework. They are disabled by
default. Events are stored to a file (default name is bof.log). One can make
direct call to bof’s logger to record custom events.

bof.enable_logging()
bof.log("Cannot send data to {0}:{1}".format(ip, port), level="ERROR")

Discovery

Overview

This module constains high-level functions for device discovery on a network
using several protocols.

Passive discovery

When discovering devices on an industrial network, the less we interact directly
with devices the better (otherwise we may break something). The
passive_discovery() function sends identify requests to protocol-specific
multicast addresses. Devices that subscribe to them are supposed to
respond.

passive_discovery(iface="eth0", verbose=True)

So far, here is what the function does:

	Listen to LLDP multicast address (switches and other network usually send
LLDP packets with their description)

	Send a Profinet DCP identify request

	Send a KNXnet/IP search request

Other discovery functions

The following discovery functions are available independently:

	lldp_discovery()

	Listen on the network for LLDP packets sent on LLDP’s
multicast MAC address. This function is synchronous. For
the async version, call lldp.start_listening() and
lldp.stop_listening().

	profinet_discovery()

	Send an identify request on Profinet DCP’s multicast
MAC address.

	knx_discovery()

	Send a search request on KNXnet/IP’s multicast IP address.

KNX

KNX is a field bus protocol, mainly used for building management systems. BOF
implements KNXnet/IP, which is part of the KNX specification to link field KNX
components to the IP network.

Device discovery

BOF provides features to discover devices on a network and gather information
about them. Calling them will send the appropriate KNXnet/IP requests to devices
and parse their response, you don’t need to know how the protocol works.

from bof.layers.knx import search

devices = search()
for device in devices:
 print(device)

You can also learn more about a specific device:

from bof.layers.knx import discover

device = discover("192.168.1.42")
print(device)

The resulting object is a KNXDevice object that comes with a set
of attributes and methods to interact with a device.

Note

The function knx_discovery() in the Discovery module can also
be used (relies on search()).

Send commands

A few commands are available so far to perform basic operations on a KNXnet/IP
server or underlying devices:

from bof.layers.knx import group_write

Write value 1 to group address 1/1/1
group_write(device.ip_address, "1/1/1", 1)

Connect to a device

from bof.layers import knx
from bof import BOFNetworkError

knxnet = knx.KnxNet()
try:
 knxnet.connect("192.168.1.1", 3671)
 # Do stuff
except BOFNetworkError as bne:
 print(str(bne))
finally:
 knxnet.disconnect()

The class KnxNet is used to connect to a KNX device (server or object). It
creates a UDP connection to a KNX device. connect can take an additionnal
init parameter.

Send and receive frames

from bof.layers.knx import KNXnet, KNXPacket, SID

knxnet = KNXnet().connect("192.168.1.242")
pkt = KNXPacket(type=SID.description_request)
pkt.ip_address, pkt.port = knxnet.source
pkt.show2()
response, _ = knxnet.sr(pkt)
response.show2()
knxnet.disconnect()

When a connection is established, one may start sending KNX frames to a
device. Frames are sent and received as byte arrays, but they are represented as
KNXPacket within BOF. In the example above, we create a frame with type
Description Request to ask a device to describe itself. The format of such
frame is extracted from the KNX implementation in Scapy format, either
integrated to Scapy or imported to BOF’s raw_scapy directory. The
response is received as a byte array, converted to a KNXPacket object.

You can also use methods that will directly initialize and send the following
basic KNXnet/IP frames.

knxnet = KNXnet().connect(ip, port)
CONNECT REQUEST
channel = connect_request_management(knxnet)
CONFIGURATION REQUEST with "property read" KNX message
cemi = cemi_property_read(CEMI_OBJECT_TYPES.ip_parameter_object,
 CEMI_PROPERTIES.pid_additional_individual_addresses)
response = configuration_request(knxnet, channel, cemi)
DISCONNECT REQUEST
disconnect_request(knxnet, channel)
knxnet.disconnect()

Available requests (from KNX Standard v2.1) are:

	Search request

	Description request

	Connect request (with connection type “management” and “tunneling”)

	Disconnect request

	Configuration request

	Tunneling request

Note

Configuration requests and tunneling requests “carry”
medium-independent KNX data in a block called “cEMI”. Therefore, when
creating such a request you need to specify the type of cEMI to use
(see below for details).

Understanding KNX frames

Structure

Conforming to the KNX Standard v2.1, a KNX frame has a header and body. The
header’s structure never changes but the body’s structure varies according to
the type of frame (message) given in the header’s service identifier
field.

[image: ../_images/knx_frame.png]

A KNX frame contains a set of blocks (set of fields) which contain raw fields or
nested block. In BOF (and Scapy), we do not refer to blocks: A KNXPacket
contains a Scapy Packet with Field objects. Some Field objects act
as blocks (yeah, I know…) and may contain other Field objects.

Message types

The KNX standard describes a set of message types with different format. Please
refer to KNX implementation using Scapy here: bof/layers/raw_scapy/knx.py or
in Scapy’s KNX contrib (should be the same anyway). The header contains a field
service_identifier that states the type of message. knx.SID contains a
list of valid types to use when creating a frame:

>>> from bof.layers.knx import *
>>> packet = KNXPacket(type=SID.configuration_request)
>>> packet.show2()
###[KNXnet/IP]###
 header_length= 6
 protocol_version= 0x10
 service_identifier= CONFIGURATION_REQUEST
 total_length= 21
###[CONFIGURATION_REQUEST]###
 structure_length= 4
 communication_channel_id= 1
 sequence_counter= 0
 reserved = 0
 \cemi \
 |###[CEMI]###
 | message_code= 0
 | \cemi_data \
 | |###[L_cEMI]###
 [...]

Service identifier codes are also directly accepted:

>>> packet2 = KNXPacket(type=0x0201)
>>> packet2.show2()
###[KNXnet/IP]###
 header_length= 6
 protocol_version= 0x10
 service_identifier= SEARCH_REQUEST
 total_length= 14
###[('SEARCH_REQUEST',)]###
 \discovery_endpoint\
 |###[HPAI]###
 | structure_length= 8
 | host_protocol= IPV4_UDP
 | ip_address= 0.0.0.0
 | port = 0

Specifying no types create an empty KNX Packet.

KNXnet/IP messages vs. KNX messages

We use BOF to interact with a device over IP, that’s why we always send
KNXnet/IP requests. Some of them stick to “IP” level and will retrieve global
information that “exist” at this level (for instance, hardware and network
information about a KNXnet/IP server).

knx.discover("192.168.1.42")

Outputs:

Device: "boiboite" @ 192.168.1.242:3671 - KNX address: 15.15.255 -
Hardware: 00:00:ff:ff:ff:ff (SN: 0123456789)

However, some requests move to the “KNX” level (the layer below), either to
retrieve or send KNX-specific information on a KNXnet/IP server, or to interact
with KNX devices underneath. In this case, some KNXnet/IP frames (most notably
configuration requests and tunneling requests) will carry a special block
containing medium-independent KNX data.

This special KNX data block is called cEMI (for Common External Messaging
Interface) and it acts like a frame inside the frame, with its own protocol
definition. You can also find it in KNX standard v2.1, but KNXnet/IP
specification is not the same as KNX specification.

For instance, “tunneling requests” carry KNX data to be transferred to KNX
devices. When you want to write a value to a KNX object, the tunneling request
has to carry a specific cEMI message for value write on addresses.

This cEMI message has a type (here, the data link layer message format) and a
set of properties of values to indicate what is the expected behavior.

Here is one way to write a KNX write request on a group address with BOF. There
are higher-level functions in BOF to do the same thing. For this one you can
also just call the group_write() function.

Create cEMI block (KNX data)
cemi = scapy_knx.CEMI(message_code=CEMI.l_data_req) # Link layer request
cemi.cemi_data.source_address = knx_source # Retrieved from a connect request
cemi.cemi_data.destination_address = "1/1/1"
cemi.cemi_data.acpi = ACPI.groupvaluewrite # Type of command
cemi.cemi_data.data = value
Insert it to a tunneling request
tun_req = KNXPacket(type=SID.tunneling_request)
tun_req.communication_channel_id = channel # Retrieved from a connect request
tun_req.cemi = cemi
tun_req.show2()

Testing KNXnet/IP implementations with BOF

BOF provides means to add fields, change their values, even if that does not
comply with the protocol. Please refer to the protocol-independent
documentation to know how.

Warning

KNX frame servers usually have strict parsing rules and won’t consider
invalid frames. If you modify the structure of a frame or block and differ
too much from the specification, you should not expect the KNX device to
respond.

Notice

This section is intended for contributors, either for improving existing parts
(core, existing implementation) or adding new protocol implementations. Before
going further, please consider the following notice.

Code quality requirements

	Quality

	We like clean code and expect contributions to be PEP-8 compliant as much as
possible (even though we don’t test for it). New code should be readable easily
and maintainable. And remember: if you need to use “and” while explaining what
your function does, then you can probably split it.

	Genericity

	Part of the code (the “core”) is used by all protocol implementations. When
you add code to the core, please make sure that it does not cause issues in
protocol-specific codes. Also, if you write or find out that code in
implementations can be made generic and added to the core, feel free to do
it.

	Unit tests

	We use Python’s unittest to write unit tests. When working on BOF, please
write or update unit tests! They are in tests/. You can run all unit tests
with: python -m unittest discover -s tests.

Comments and documentation

	Docstrings

	Modules, functions, classes, methods start with docstrings written in
ReStructuredText. Docstrings are extracted to build the ReadTheDocs source
code documentation using Sphinx. We use a not-so-strict format, but you
should at least make sure that docstrings are useful to the reader, contain
the appropriate details and have a valid and consistent format. You can also
rely on the following model:

"""Brief description of the module, function, class, method.

A few details on how, where, when and why to use it.

:param first: Description of param "first": type, usage, origin
 Second line of description if one isn't enough.
:param second: Description of param "second"
:returns: The value that is returned, if any.
:raises BOFProgrammingError: if misused

Usage example::

 if there is any interest in adding such example, please do so.
"""

Git branching

We follow the “successful git branching model” described here [https://nvie.com/posts/a-successful-git-branching-model/]. In a nutshell:

	Branch from master for hotfixes

	Work on dev for small changes

	Create specific feature branches from dev for big changes

	Don’t work on master

Report issues

Report bugs, ask questions or request for missing documentation and new features
by submitting an issue on GitHub. For bugs, please describe your problem as
clearly as you can.

Architecture

The library has the following structure:

.
├── bof
│ ├── base.py
│ ├── network.py
│ ├── packet.py
│ ├── __init__.py
│ ├── layers
│ │ ├── knx
│ │ │ ├── knx_constants.py
│ │ │ ├── knx_device.py
│ │ │ ├── knx_functions.py
│ │ │ ├── knx_network.py
│ │ │ ├── knx_packet.py
│ │ ├── other protocol
│ │ │ ├── other protocol content
│ │ └── raw_scapy
│ │ ├── knx.py
│ ├── modules
│ │ ├── discovery.py

	The protocol-independent part of BOF (the core) is in bof directly.

	BOF protocol features are in bof/layers/[protocol]

	Scapy protocol implementations are imported directly from Scapy or can be
stored in bof/layers/raw_scapy/[protocol].py

	Higher-level functions not speciic to a layer are in modules (e.g. the
discovery module for device discovery on a network using several
protocols).

Apart from the library:

	The documentation as RestructuredText files for Sphinx is in docs

	Unit tests (one file for the core, one file per protocol) are in tests

	Implementation examples are in examples/[protocol|module]

Extend BOF

Here is how to add a new protocol to BOF:

	Make sure that the protocol exist in Scapy or provide an implementation in
Scapy format (the file can be stored in bof/layers/raw_scapy).

	Create a folder in bof/layers with the name of your implementation. Here
we’ll add the protocol otter.

	In bof/layers/otter, create a Python file with a class inerithing either
from TCP or UDP (they are in bof/network.py). It will contain any
protocol-related operations at network level. For instance, you may overwrite
send and receive operation so that they return OtterPacket directly.

	Create another Python file to write a class OtterPacket (or whatever)
inheriting from BOFPacket.

class OtterPacket(BOFPacket):

	Please refer to BOFPacket (in bof/packet.py) and to other
implementations such as KNX to know how to write the content of the
class, until I write a better tutorial! :D

	Additionnaly, you can create a Python file to write higher-level functions
(for instance, objects inheriting BOFDevice and functions that creates
it), and move your protocol-dependent constants to a dedicated Python file.

Note

You can also create the layer with only higher-level functions that
rely directly on the Scapy packet without BOF’s overrides (i.e.: no
BOFPacket object). Layers LLDP and Profinet currently work this way.

Introduction

Boiboite Opener Framework / Ouvre-Boiboite Framework contains a set of features
to write scripts using industrial network protocols for test and attack
purposes.

The following submodules are available:

	base

	Basic helpers for correct module usage (error handling, logging, some
parsing features.

	network

	Global network classes, used by protocol implementations in submodules.
The content of this class should not be used directly, unless writing a
new protocol submodule.

	packet

	Base class for specialized BOF packets in layers. Such classes link BOF
content and usage to protocol implementations in Scapy. In other words,
they interface BOF’s syntax used by the end user with Scapy Packet and
Field objects used for the packet itself. The base class BOFPacket
is not supposed to be instantiated directly, but whatever.

	device

	Global object for representing industrial devices. All objects in
layers built using data extracted from responses to protocol-specific
discovery requests shall inherit BOFDevice.

	layers

	Protocol implementations to be imported in BOF. Importing layers gives
access to BOF protocol implementations inheriting from BOFPacket
(interface between BOF and Scapy worlds). The directory
layers/raw_scapy may contain protocol implementations in Scapy which
are not integrated to Scapy’s repository (for instance, if you wrote your
own but did not contribute (yet)).

	modules

	Higher level functions gathered around a specific usage that may rely on
several protocols (layers).

Available submodules:

	Basic and global functions
	Global settings and error handling

	Basic network protocol implementation

	BOFPacket base class

	BOFDevice base class

	Modules
	Using modules

	Discovery

	Layers
	Using layers

	KNX

	LLDP

	Profinet DCP

Basic and global functions

Global settings and error handling

Set of global and useful classes and functions used within the module.

	Exceptions

	BOF-specific exceptions raised by the module.

	Logging

	Functions to enable or disable logging for the module.

	String manipulation

	Functions to make basic changes on strings.

	
exception bof.base.BOFError

	Bases: Exception

Base class for all BOF exceptions.

Warning

Should not be used directly, please raise or catch subclasses
instead.

	
exception bof.base.BOFLibraryError

	Bases: bof.base.BOFError

Library, files and import-related exceptions.

Raise when the library cannot find what it needs to work correctly
(such as an external module or a file).

	
exception bof.base.BOFNetworkError

	Bases: bof.base.BOFError

Network-related exceptions.

Raise when the network connection fails or is interrupted.

	
exception bof.base.BOFProgrammingError

	Bases: bof.base.BOFError

Script and module programming-related errors.

Raise when a function or an argument is not used as expected.

Note

As a module user, this exception is the most frequent one.

	
bof.base.disable_logging() → None

	Turn off logging features,

	
bof.base.enable_logging(filename: str = '', error_only: bool = False) → None

	Turn on logging features to store BOF-autogenerated and user events.
Relies on Python’s logging module.

	Parameters

	
	filename – Optional name of the file in which events will be saved.
Default is bof.log.

	error_only – All types of events are logged (info, warning, error)
are saved unless this parameter is set to True.

	
bof.base.log(message: str, level: str = 'INFO') → bool

	Logs an event (message) to a file, if BOF logging is enabled.
Requires previous call to bof.`enable_logging()`.
A message is recorded along with event-related information:

	date and time

	level (can be changed with parameter level)

	event location in the code (file name, line number)

	Parameters

	
	message – Event definition.

	level – Type of event to record: ERROR, WARNING, DEBUG.
INFO` (default). Levels from Python’s logging are used.

	Returns

	Current state of logging (enabled/True, disabled/False).

	
bof.base.to_property(value: str) → str

	Lower a string and replace all non alnum characters with _

Basic network protocol implementation

Network protocol global classes and abstract implementations.

Provides classes for asynchronous network connection management on different
transport protocols, to be used by higher-level protocol implementation classes.
Relies on module asyncio.

	UDP

	Implementation of asynchronous UDP communication and packet crafting.

	TCP

	Implementation of asynchronous TCP communication and packet crafting.

Both classes rely on internal class _Transport, which should not be
instantiated.

Network connection and exchange example with raw UDP:

from bof import UDP
udp = UDP()
udp.connect("192.168.1.1", 3671)
udp.send(b"Hi!")
udp.disconnect()

Usage is the same with raw TCP.

Warning

Direct initialization of TCP/UDP object is not recommended.
The user should use BOF network classes inherited from
TCP/UDP (e.g. KNXnet for the KNX protocol).

	
bof.network.IS_IP(ip: str)

	Check that ip is a valid IPv4 address.

	
class bof.network.TCP

	Bases: bof.network._Transport

TCP protocol endpoint.

This is the parent class to higher-lever network protocol implementation.
It can be instantiated as is, however this is not the expected behavior.
Uses protected _TCP classes implementing asyncio TCP handler.

Warning

Should not be instantiated directly.

	
connect(ip: str, port: int) → object

	Initialize asynchronous connection using TCP on ip:port.

	Parameters

	
	ip – IPv4 address as a string with format A.B.C.D.

	port – Port number as an integer.

	Returns

	The instance of the TCP class created,

	Raises

	BOFNetworkError – if connection fails.

Example:

tcp = bof.TCP().connect("127.0.0.1", 4840)

	
send(data: bytes, address: tuple = None) → int

	Send data to address over TCP.

	Parameters

	
	data – Raw byte array or string to send.

	address – Address to send data to, with format
tuple (ipv4_address, port). If address is not
specified, uses the address given to connect.

	Returns

	The number of bytes sent, as an integer.

Example:

tcp.send("test_send")
tcp.send(b'

 Modules

Modules

Using modules

Modules are higher-level features provided by BOF. They can rely on one or
more layer, depending on what they do. Basically, each module is a collection
of functions to call in a script.

List of modules:

	Discovery: Functions to gather initial information on industrial devices
on a network, using active and passive techniques. Rely on several protocols.

Discovery

Module: Discovery

Functions for passive and active discovery of industrial devices on a network.

	
bof.modules.discovery.knx_discovery(ip: str = '224.0.23.12', port=3671, **kwargs)

	Search for KNX devices on an network using multicast.

Implementation in KNX layer.

	
bof.modules.discovery.lldp_discovery(iface: str = 'eth0', timeout: int = 20) → list

	Search for devices on an network by listening to LLDP requests.

Converts back asynchronous to synchronous with sleep (silly I know). If you
want to keep asynchrone, call directly start_listening and
stop_listening in your code.

Implementation in LLDP layer.

	
bof.modules.discovery.passive_discovery(iface: str = 'eth0', pndcp_multicast: str = '01:0e:cf:00:00:00', knx_multicast: str = '224.0.23.12', verbose: bool = False)

	Discover devices on an industrial network using passive methods.

Requests are sent to protocols’ multicast addresses or via broadcast.
Currently, LLDP and KNX are supported.

	Parameters

	
	lldp_multicast – Multicast MAC address for LLDP requests.

	knx_multicast – Multicast IP address for KNXnet/IP requests.

	
bof.modules.discovery.profinet_discovery(iface: str = 'eth0', mac_addr: str = '01:0e:cf:00:00:00') → list

	Search for devices on an network using multicast Profinet DCP requests.

Implementation in Profinet layer.

 Layers

Layers

Using layers

BOF relies on protocol implementations built using the Scapy syntax, to provide
security testing and fuzzing features. In other words, BOF works as follows:

The layers folder contain BOF features for implemented protocols.

Scapy protocol implementations can be imported directly from Scapy or from
a KNX implementation not integrated to Scapy that should be located in the
layers/raw_scapy folder.

KNX

KNX and KNXnet/IP

KNX is a common field bus protocol in Europe, mostly used in Building Management
Systems. KNXnet/IP is the version of the protocol over IP, implementing specific
type of frames that either ask information from or send request to a gateway
(server) between an IP network and a KNX bus or carry KNX messages that the
gateway must relay to KNX devieces on the field bus.

The protocol is a merge a several older ones, the specifications are maintained
by the KNX association and can be found on their website (section 3 is the
interesting one).

BOF’s knx submodule can be imported with:

from bof.layers import knx
from bof.layers.knx import *

The following files are available in the module:

	knx_network

	Class for network communication with KNX over UDP. Inherits from BOF’s
network UDP class. Implements methods to connect, disconnect and
mostly send and receive frames as KNXPacket objects.

	knx_packet

	Object representation of a KNX packet. KNXPacket inherits BOFPacket
and uses Scapy’s implementation of KNX (located in bof/layers/raw_scapy
or directly in Scapy contrib). Contains method to build, read or alter a
frame or part of it, even if this does not follow KNX’s specifications.

	knx_messages

	Set of functions that build specific KNX messages with the right values.

	knx_functions

	Higher-level functions to discover and interact with devices via KNXnet/IP.

Network connection

KNXnet/IP connection features, implementing bof.network’s UDP class.

The KnxNet class translates KNXPacket packet objects and raw Scapy
packets to bytes to send them, and received bytes to KNXPacket objects.

KNX usually works over UDP, however KNX specification v2.1 state that TCP can
also be used. The communication between BOF and a KNX device still acts like
a TCP-based protocol, as (almost) every request expects a response.

Usage:

knxnet = KNXnet()
knxnet.connect("192.168.1.242")
data, addr = knxnet.sr(KNXPacket(type=SID.description_request))
data.show2()
knxnet.disconnect()

	
class bof.layers.knx.knx_network.KNXnet

	Bases: bof.network.UDP

KNXnet/IP communication over UDP with protocol KNX.
Relies on bof.network.UDP().

Sent and received datagrams are returned as KNXPacket() objects.

..seealso:: Details on data exchange: KNX Standard v2.1 - 03_03_04.

	
connect(ip: str, port: int = 3671) → object

	Connect to a KNX device (opens socket). Default port is 3671.

	Parameters

	
	ip – IPv4 address as a string with format A.B.C.D.

	port – KNX port. Default is 3671.

	Returns

	The KNXnet connection object (this instance).

	Raises

	BOFNetworkError – if connection fails.

	
receive(timeout: float = 1.0) → object

	Converts received bytes to a parsed KNXPacket object.

	Parameters

	timeout – Time to wait to receive a frame (default is 1 sec)

	Returns

	A KNXPacket object.

	
send(data: object, address: tuple = None) → int

	Converts BOF and Scapy frames to bytes to send.
Relies on UDP class to send data.

	Parameters

	
	data – Data to send as KNXPacket, Scapy Packet, string
or bytes. Will be converted to bytes anyway.

	address – Address to send data to, with format (ip, port).
If address is not specified, uses the address given to
`` connect``.

	Returns

	The number of bytes sent, as an integer.

	
sequence_counter = None

	

KNXPacket

This class inheriting from BOFPacket is the interface between BOF’s usage
of KNX by the end user and an actual Scapy packet built using KNX’s
implementation in Scapy format.

In BOFPacket and KNXPacket, several builtin methods and attributes are just
relayed to the Scapy Packet underneath. We also want to let the user interact
directly with the Scapy packet if she wants, using scapy_pkt attribute.

Example:

>>> from bof.layers.knx import *
>>> packet = KNXPacket(type=SID.description_request)
>>> packet
<bof.layers.knx.knx_packet.KNXPacket object at 0x7ff74224add8>
>>> packet.scapy_pkt
<KNX service_identifier=DESCRIPTION_REQUEST |<KNXDescriptionRequest control_endpoint=<HPAI |> |>>

	
class bof.layers.knx.knx_packet.KNXPacket(_pkt: bytes = None, scapy_pkt: scapy.packet.Packet = None, type: object = None, **kwargs)

	Bases: bof.packet.BOFPacket

Builds a KNXPacket packet from a byte array or from attributes.

	Parameters

	
	_pkt – KNX frame as byte array to build KNXPacket from.

	scapy_pkt – Instantiated Scapy Packet to use as a KNXPacket.

	type – Type of frame to build. Ignored if _pkt set.
Should be a value from SID dict imported from KNX Scapy
implementation as a dict key, a string or as bytes.

	kwargs – Any field to initialize when instantiating the frame, with
format field_name=value.

Example of initialization:

pkt = KNXPacket(b"

 Python Module Index

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bof	

 	
 	
 bof.base	

 	
 	
 bof.device	

 	
 	
 bof.layers	

 	
 	
 bof.layers.knx	

 	
 	
 bof.layers.knx.knx_constants	

 	
 	
 bof.layers.knx.knx_functions	

 	
 	
 bof.layers.knx.knx_messages	

 	
 	
 bof.layers.knx.knx_network	

 	
 	
 bof.layers.knx.knx_packet	

 	
 	
 bof.layers.lldp	

 	
 	
 bof.layers.lldp.lldp_constants	

 	
 	
 bof.layers.lldp.lldp_functions	

 	
 	
 bof.layers.profinet	

 	
 	
 bof.layers.profinet.profinet_constants	

 	
 	
 bof.layers.profinet.profinet_functions	

 	
 	
 bof.modules	

 	
 	
 bof.modules.discovery	

 	
 	
 bof.network	

 	
 	
 bof.packet	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	append() (bof.packet.BOFPacket method)

B

 	
 	bof (module)

 	bof.base (module)

 	bof.device (module)

 	bof.layers (module)

 	bof.layers.knx (module)

 	bof.layers.knx.knx_constants (module)

 	bof.layers.knx.knx_functions (module)

 	bof.layers.knx.knx_messages (module)

 	bof.layers.knx.knx_network (module)

 	bof.layers.knx.knx_packet (module)

 	bof.layers.lldp (module)

 	bof.layers.lldp.lldp_constants (module)

 	bof.layers.lldp.lldp_functions (module)

 	
 	bof.layers.profinet (module)

 	bof.layers.profinet.profinet_constants (module)

 	bof.layers.profinet.profinet_functions (module)

 	bof.modules (module)

 	bof.modules.discovery (module)

 	bof.network (module)

 	bof.packet (module)

 	BOFDevice (class in bof.device)

 	BOFError

 	BOFLibraryError

 	BOFNetworkError

 	BOFPacket (class in bof.packet)

 	BOFProgrammingError

 	broadcast() (bof.network.UDP static method)

C

 	
 	capabilities (bof.layers.lldp.lldp_functions.LLDPDevice attribute)

 	cemi_ack() (in module bof.layers.knx.knx_messages)

 	cemi_connect() (in module bof.layers.knx.knx_messages)

 	cemi_dev_descr_read() (in module bof.layers.knx.knx_messages)

 	cemi_disconnect() (in module bof.layers.knx.knx_messages)

 	cemi_group_write() (in module bof.layers.knx.knx_messages)

 	cemi_property_read() (in module bof.layers.knx.knx_messages)

 	chassis_id (bof.layers.lldp.lldp_functions.LLDPDevice attribute)

 	configuration_ack() (in module bof.layers.knx.knx_messages)

 	
 	configuration_request() (in module bof.layers.knx.knx_messages)

 	connect() (bof.layers.knx.knx_network.KNXnet method)

 	(bof.network.TCP method)

 	(bof.network.UDP method)

 	connect_request_management() (in module bof.layers.knx.knx_messages)

 	connect_request_tunneling() (in module bof.layers.knx.knx_messages)

 	copy() (bof.packet.BOFPacket method)

 	create_identify_packet() (in module bof.layers.profinet.profinet_functions)

 	create_packet() (in module bof.layers.lldp.lldp_functions)

D

 	
 	description (bof.device.BOFDevice attribute)

 	(bof.layers.lldp.lldp_functions.LLDPDevice attribute)

 	(bof.layers.profinet.profinet_functions.ProfinetDevice attribute)

 	description_request() (in module bof.layers.knx.knx_messages)

 	
 	device_id (bof.layers.profinet.profinet_functions.ProfinetDevice attribute)

 	disable_logging() (in module bof.base)

 	disconnect_request() (in module bof.layers.knx.knx_messages)

 	discover() (in module bof.layers.knx.knx_functions)

E

 	
 	enable_logging() (in module bof.base)

F

 	
 	fields (bof.packet.BOFPacket attribute)

 	
 	fuzz() (bof.packet.BOFPacket method)

G

 	
 	get() (bof.packet.BOFPacket method)

 	
 	GROUP_ADDR() (in module bof.layers.knx.knx_functions)

 	group_write() (in module bof.layers.knx.knx_functions)

I

 	
 	INDIV_ADDR() (in module bof.layers.knx.knx_functions)

 	individual_address_scan() (in module bof.layers.knx.knx_functions)

 	init_from_description_response() (bof.layers.knx.knx_functions.KNXDevice class method)

 	init_from_search_response() (bof.layers.knx.knx_functions.KNXDevice class method)

 	ip_address (bof.device.BOFDevice attribute)

 	(bof.layers.lldp.lldp_functions.LLDPDevice attribute)

 	(bof.layers.profinet.profinet_functions.ProfinetDevice attribute)

 	
 	ip_gateway (bof.layers.profinet.profinet_functions.ProfinetDevice attribute)

 	ip_netmask (bof.layers.profinet.profinet_functions.ProfinetDevice attribute)

 	IS_IP() (in module bof.network)

K

 	
 	knx_discovery() (in module bof.modules.discovery)

 	KNXDevice (class in bof.layers.knx.knx_functions)

 	
 	KNXnet (class in bof.layers.knx.knx_network)

 	KNXPacket (class in bof.layers.knx.knx_packet)

L

 	
 	length (bof.packet.BOFPacket attribute)

 	line_scan() (in module bof.layers.knx.knx_functions)

 	listen_sync() (in module bof.layers.lldp.lldp_functions)

 	
 	lldp_discovery() (in module bof.modules.discovery)

 	LLDPDevice (class in bof.layers.lldp.lldp_functions)

 	log() (in module bof.base)

M

 	
 	mac_address (bof.device.BOFDevice attribute)

 	(bof.layers.lldp.lldp_functions.LLDPDevice attribute)

 	(bof.layers.profinet.profinet_functions.ProfinetDevice attribute)

 	
 	multicast() (bof.network.UDP static method)

N

 	
 	name (bof.device.BOFDevice attribute)

 	(bof.layers.lldp.lldp_functions.LLDPDevice attribute)

 	(bof.layers.profinet.profinet_functions.ProfinetDevice attribute)

P

 	
 	parse() (bof.layers.lldp.lldp_functions.LLDPDevice method)

 	(bof.layers.profinet.profinet_functions.ProfinetDevice method)

 	passive_discovery() (in module bof.modules.discovery)

 	port_desc (bof.layers.lldp.lldp_functions.LLDPDevice attribute)

 	port_id (bof.layers.lldp.lldp_functions.LLDPDevice attribute)

 	
 	profinet_discovery() (in module bof.modules.discovery)

 	ProfinetDevice (class in bof.layers.profinet.profinet_functions)

 	protocol (bof.device.BOFDevice attribute)

 	(bof.layers.knx.knx_functions.KNXDevice attribute)

 	(bof.layers.lldp.lldp_functions.LLDPDevice attribute)

 	(bof.layers.profinet.profinet_functions.ProfinetDevice attribute)

R

 	
 	receive() (bof.layers.knx.knx_network.KNXnet method)

S

 	
 	scapy_pkt (bof.packet.BOFPacket attribute)

 	search() (in module bof.layers.knx.knx_functions)

 	search_request() (in module bof.layers.knx.knx_messages)

 	send() (bof.layers.knx.knx_network.KNXnet method)

 	(bof.network.TCP method)

 	(bof.network.UDP method)

 	
 	send_identify_request() (in module bof.layers.profinet.profinet_functions)

 	send_multicast() (in module bof.layers.lldp.lldp_functions)

 	sequence_counter (bof.layers.knx.knx_network.KNXnet attribute)

 	set_type() (bof.layers.knx.knx_packet.KNXPacket method)

 	sid (bof.layers.knx.knx_packet.KNXPacket attribute)

 	start_listening() (in module bof.layers.lldp.lldp_functions)

 	stop_listening() (in module bof.layers.lldp.lldp_functions)

T

 	
 	TCP (class in bof.network)

 	to_property() (in module bof.base)

 	tunneling_ack() (in module bof.layers.knx.knx_messages)

 	
 	tunneling_request() (in module bof.layers.knx.knx_messages)

 	type (bof.layers.knx.knx_packet.KNXPacket attribute)

 	(bof.packet.BOFPacket attribute)

U

 	
 	UDP (class in bof.network)

 	
 	update() (bof.packet.BOFPacket method)

V

 	
 	vendor_id (bof.layers.profinet.profinet_functions.ProfinetDevice attribute)

_static/comment-bright.png

_images/knx_frame.png
uoP
Datagram

KX
Frame

Header

Biock

Fiekd

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/bof_levels.png
Pkt = KNXPacket()
ptservice_identifier
hpai = HPAI()
pktappend(npai)
pktip_address = "192.168.1.2"
knx.send(pkt)

D0203"

Implem. level Protocol level
‘Specification Protocol
knowledge Knowledge

User level
No knowiedge

Use

~implements

Pkt - KNXPackel(y
SID. descrption_request)
K send (pkt)

Interact

Use

Implements

knx.discover()

Interact.

neract Vi

KNXnet/IP
Server

_images/bof_scapy.png
Oreguiar usage
—F—

Direct use of
Scapy object

BOFPacket

Scapy

Other attributes and methods

Protocol implementation
(ex : contrib/modbus.py)

i

T

scapy_packet attribute

Packet

_images/boiboite.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Boiboite Opener Framework’s documentation

 		
 Introduction

 		
 Overview

 		
 Interface with Scapy

 		
 TL;DR

 		
 Several ways to discover devices on a network

 		
 Passive discovery from the discovery module

 		
 Device discovery using a layer’s high-level function

 		
 Create and send your own discovery packet

 		
 Send and receive packets

 		
 Craft your own packets!

 		
 Basic fuzzing

 		
 Usage

 		
 Getting started with BOF Packets

 		
 View packets and fields

 		
 Modify packets and fields

 		
 Network connection

 		
 Error handling and logging

 		
 Discovery

 		
 Overview

 		
 Passive discovery

 		
 Other discovery functions

 		
 KNX

 		
 Device discovery

 		
 Send commands

 		
 Connect to a device

 		
 Send and receive frames

 		
 Understanding KNX frames

 		
 Structure

 		
 Message types

 		
 KNXnet/IP messages vs. KNX messages

 		
 Testing KNXnet/IP implementations with BOF

 		
 Notice

 		
 Code quality requirements

 		
 Comments and documentation

 		
 Git branching

 		
 Report issues

 		
 Architecture

 		
 Extend BOF

 		
 Introduction

 		
 Basic and global functions

 		
 Global settings and error handling

 		
 Basic network protocol implementation

 		
 BOFPacket base class

 		
 BOFDevice base class

 		
 Modules

 		
 Using modules

 		
 Discovery

 		
 Module: Discovery

 		
 Layers

 		
 Using layers

 		
 KNX

 		
 KNX and KNXnet/IP

 		
 Network connection

 		
 KNXPacket

 		
 KNX